Photosystem II Assembly from Scratch
نویسندگان
چکیده
Construction of a functional Photosystem II (PSII) in cyanobacteria and chloroplasts depends on the action of auxiliary factors, which transiently interact with PSII intermediates during assembly. In addition to a common PSII structure and a conserved set of PSII assembly factors, cyanobacteria, and higher plants have evolved additional, clade-specific assembly factors. Most such factors in cyanobacteria and chloroplasts have been identified by " top-down " approaches (forward and reverse genetics), which involved genetic disruption of individual components in the assembly process and subsequent characterization of the ensuing phenotypic effects on the respective mutant lines/strains. In contrast, a " bottom-up " strategy, based on the engineering of a synthetic bacterium with a plant-type PSII, has the potential to identify all assembly factors sufficient to make a functional plant PSII. Photosystem II (PSII) is a water-plastoquinone photo-oxidoreductase, which is found in cyanobacteria and their endosymbiotic descendants, the chloroplasts. Light-driven water splitting and subsequent electron transfer steps are carried out with the assistance of non-proteinaceous cofactors. Thus, the PSII monomer harbors a Mn 4 CaO 5 cluster, chloride, bicarbonate, 1-2 hemes, 1 nonheme iron, 35 chlorophyll a molecules, 2 pheophytins, 11 β-carotenes, and 2 plastoquinones (Umena et al., 2011), all of which are embedded in a shell made up of at least 20 proteins (Shen, 2015) that determine their correct positioning and relative orientation. Several PSII-associated lipids have been identified in crystal structures and might also be important for functionality (Mizusawa and Wada, 2012; Kansy et al., 2014). The structural core of PSII is conserved between chloroplasts and cyanobacteria (Allen et al., 2011). However, the oxygen-evolving complex in cyanobacteria contains subunits U and V, which are replaced by Q, R, P, and Tn in higher plants (Bricker et al., 2012). Furthermore, in contrast to the soluble, peripherally attached phycobilisomes found in cyanobacteria, green photosynthetic eukaryotes have evolved integrated light-harvesting complexes and lack phycobilisomes (Hohmann-Marriott and Blankenship, 2011; Figure 1A). In accordance with its structural complexity, the assembly of PSII is an elaborate and highly coordinated process, which depends on the action of a network of assembly factors and the fabrication of distinct metastable modules during the course of assembly (see for reviews on this topic: Nixon et al., 2010; Nickelsen and Rengstl, 2013; and papers in this special issue of Frontiers in Plant Science). Several modules common to cyanobacterial and chloroplast PSII assembly processes have been described and are characterized by transient binding …
منابع مشابه
TerC – an essential protein for the integration of CP43 into the thylakoid membrane and its assembly into photosystem II
I Summary During evolution, most genes of the cyanobacterial ancestor of plastids were transferred to the nuclear genome of the host cell (endosymbiosis). Consequently, to maintain the physiological properties of plastids, new regulatory elements and protein import machineries have evolved. For proper assembly of the photosystem II complex, whose core proteins are still plastid encoded, several...
متن کاملElectron-transfer events leading to reconstitution of oxygen-evolution activity in manganese-depleted photosystem II membranes.
O2-evolution activity and the Mn complex can be reconstituted in photosystem II by a process called photoactivation. We have studied the elementary steps in photoactivation by using electron paramagnetic resonance spectroscopy to probe electron transport in Mn-depleted photosystem II membranes. The electron donation reactions in Mn-depleted photosystem II were found to be identical with those i...
متن کاملSlr2013 is a novel protein regulating functional assembly of photosystem II in Synechocystis sp. strain PCC 6803.
The Synechocystis sp. strain PCC 6803, which has a T192H mutation in the D2 protein of photosystem II, is an obligate photoheterotroph due to the lack of assembled photosystem II complexes. A secondary mutant, Rg2, has been selected that retains the T192H mutation but is able to grow photoautotrophically. Restoration of photoautotrophic growth in this mutant was caused by early termination at p...
متن کاملAssembly of the D1 precursor in monomeric photosystem II reaction center precomplexes precedes chlorophyll a-triggered accumulation of reaction center II in barley etioplasts.
Assembly of plastid-encoded chlorophyll binding proteins of photosystem II (PSII) was studied in etiolated barley seedlings and isolated etioplasts and either the absence or presence of de novo chlorophyll synthesis. De novo assembly of reaction center complexes in etioplasts was characterized by immunological analysis of protein complexes solubilized from inner etioplast membranes and separate...
متن کاملStructural insights into the light-driven auto-assembly process of the water-oxidizing Mn4CaO5-cluster in photosystem II
In plants, algae and cyanobacteria, Photosystem II (PSII) catalyzes the light-driven splitting of water at a protein-bound Mn4CaO5-cluster, the water-oxidizing complex (WOC). In the photosynthetic organisms, the light-driven formation of the WOC from dissolved metal ions is a key process because it is essential in both initial activation and continuous repair of PSII. Structural information is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015